Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Front Microbiol ; 15: 1324833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562481

RESUMO

Introduction: White Hypsizygus marmoreus is a popular edible mushroom. It is rich in nutrition and flavor but vulnerable to fungal disease, resulting in nutrient loss and aging. Methods: In this study, the pathogenic fungus Trichoderma spp. BBP-6 and its antagonist Bacillus sp. 1-23 were isolated and identified. The negative effects caused by this pathogen were judged by detecting a series of changes in the infected white H. marmoreus. The effects of Bacillus sp. 1-23 on Trichoderma spp. BBP-6 and the infected white H. marmoreus were detected. The effect of Bacillus sp. 1-23 treatment combined with salicylic acid (SA) was also considered. Results: The results showed that Trichoderma spp. BBP-6 could affect the activities of antioxidant enzymes PAL, POD, CAT, SOD, GR, PPO, and APX to interfere with the stability of the white H. marmoreus antioxidant enzyme system and cause the mushroom severe browning and nutrition loss, as well as general quality deterioration. Bacillus sp. 1-23 could produce chitinase and chitosanase enzymes to inhibit Trichoderma spp. BBP-6 directly. SA reinforced this inhibitory. Bacillus sp. 1-23 alone or combined with SA could help white H. marmoreus from the Trichoderma spp. BBP-6 infection to effectively maintain nutrients, restore and stabilize the antioxidant system, and reduce the production of malondialdehyde, superoxide anion and hydrogen peroxide. Discussion: Thus, such treatments could be considered potential methods to alleviate damage from disease and extend the shelf life of white H. marmoreus.

2.
Parasitol Int ; 101: 102893, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588816

RESUMO

Three new species of Gyrodactylus are described from three species of bitterling in Donghu Lake, China: Gyrodactylus ocellorhodei n. sp. from Rhodeus ocellatus; G. sinenorhodei n. sp. from Rhodeus sinensis; and G. acheilorhodei n. sp. from Acheilognathus macropterus. All the three new species showed similar opisthaptor morphology, especially the marginal hooks: all had a slender and perpendicular sickle shaft, and flat sickle base with distinct heel and inner arch which was different from the G. rhodei-group species parasitic on bitterling. Multivariate analyses based on hamulus and marginal hooks suggested that these three new species cannot be completely distinguished, despite some morphology divergence observed in certain less reliable morphometric features, such as hamulus root length, ventral bar total length and process shape. These three new species shared an identical 18S ribosomal RNA gene sequence, while the variation in the Internal Transcribed Spacers (ITS1-ITS2) sequence among them (8.4-11.2%, K2P) far exceeded the 1% ITS sequence difference that had been suggested as a threshold for species delimitation of Gyrodactylus. Phylogenetic analysis based on ITS1-ITS2 showed that all these sequenced Gyrodactylus spp. parasitic on the subfamily Acheilognathinae host formed a monophyletic group. However, a clear differentiation (18.9-20.9%, K2P of ITS1-ITS2) could be found between the subgroup from China (G. ocellorhodei n. sp., G. sinenorhodei n. sp. and G. acheilorhodei n. sp.) and that from Europe (G. rhodei).

4.
Adv Sci (Weinh) ; : e2309305, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509833

RESUMO

Spinal cord injury (SCI) has no effective treatment modalities. It faces a significant global therapeutical challenge, given its features of poor axon regeneration, progressive local inflammation, and inefficient systemic drug delivery due to the blood-spinal cord barrier (BSCB). To address these challenges, a new nano complex that achieves targeted drug delivery to the damaged spinal cord is proposed, which contains a mesoporous silica nanoparticle core loaded with microRNA and a cloaking layer of human umbilical cord mesenchymal stem cell membrane modified with rabies virus glycoprotein (RVG). The nano complex more readily crosses the damaged BSCB with its exosome-resembling properties, including appropriate size and a low-immunogenic cell membrane disguise and accumulates in the injury center because of RVG, where it releases abundant microRNAs to elicit axon sprouting and rehabilitate the inflammatory microenvironment. Culturing with nano complexes promotes axonal growth in neurons and M2 polarization in microglia. Furthermore, it showed that SCI mice treated with this nano complex by tail vein injection display significant improvement in axon regrowth, microenvironment regulation, and functional restoration. The efficacy and biocompatibility of the targeted delivery of microRNA by nano complexes demonstrate their immense potential as a noninvasive treatment for SCI.

5.
Sci Data ; 11(1): 323, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548755

RESUMO

Balantidium ctenopharyngodoni is identified as the sole ciliate species that exclusively resides within the hindgut of grass carp with high prevalence and intensity. In this study, the successful cultivation of B. ctenopharyngodoni enabled us to collect enough cells for genome sequencing. Consequently, we acquired a high-quality genome assembly spanning 68.66 Mb, encompassing a total of 22,334 nanochromosomes. Furthermore, we predicted 29,348 protein-coding genes, and 95.5% of them was supported by the RNA-seq data. The trend of GC content in the subtelomeric regions of single-gene chromosomes was similar to other ciliates containing nanochromosomes. A large number of genes encoding carbohydrate-binding modules with affinities for starch and peptidoglycans was identified. The identification of mitochondrion-related organelles (MROs) within genome indicates its well-suited adaptation to the anaerobic conditions in the hindgut environment. In summary, our results will offer resources for understanding the genetic basis and molecular adaptations of balantidia to hindgut of herbivorous fish.


Assuntos
Balantidium , Genoma de Protozoário , Animais , Balantidium/genética , Sequência de Bases , Cromossomos , Filogenia , Carpas
6.
Folia Parasitol (Praha) ; 712024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38440897

RESUMO

Although parasitic copepods of the genus Ergasilus von Nordmann, 1832 are globally distributed parasites of fish, their phylogenetic relationships with other Copepoda are not clear, and the characteristics of their mitochondrial genomes (mitogenomes) are not thoroughly understood. The objective of this study was to address these knowledge gaps by sequencing the complete mitogenome of Ergasilus tumidus Markevich, 1940. The complete mitogenome (GenBank Acc. No. OQ596537) was 14,431 bp long and it comprised 13 protein-coding genes (PCGs), 22 tRNAs, two tRNAs, and two control regions (CRs). Phylogenetic analyses, conducted using concatenated nucleotide and amino acid sequences of 13 protein-coding genes, produced two partially incongruent topologies. While the order Calanoida was consistently resolved as the sister lineage to the other three orders, topological instability was observed in the relationships of the orders Cyclopoida, Siphonostomatoida and Harpacticoida. Siphonostomatoida clustered with Cyclopoida in the nucleotide-based phylogeny, but with Harpacticoida in the amino acid-based phylogeny. The latter topology conforms to the widely accepted relationships, but we speculate that the former topology is more likely to be the correct one. Our study provides a complete mitogenome sequence of E. tumidus, which helps us better understand the molecular evolution of the genus Ergasilus. Additionally, we suggest a different perspective on the controversial phylogenetic relationships among Siphonostomatoida, Cyclopoida and Harpacticoida, diverging from previously accepted views.


Assuntos
Copépodes , Genoma Mitocondrial , Animais , Copépodes/genética , Filogenia , Sequência de Aminoácidos , Nucleotídeos
8.
Fish Shellfish Immunol ; 147: 109429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342413

RESUMO

Gibel carp (Carassius auratus gibelio) is an important economically farmed fish in China. Chilodonella hexasticha parasitizes on the gills and fins of host fish, causing disruption to their normal respiration and movement, ultimately resulting in death of the fish. In this study, a combination of histopathological, immunohistochemical, transferase dUTP nick end labeling (TUNEL), multi-omics, and molecular approaches were employed to identify the immune reaction and cell apoptosis in gill tissue in response to C. hexasticha infection. Significant lamellae fusion, hyperplasia, hyperemia, necrosis, and desquamation of infected gibel carp gills were observed. In total, the expression of 3619 genes was higher, and 3143 lower, for gills in the infected group compared to the control group. Furthermore, 76 metabolites were significantly increased and 105 were significantly decreased in the infected group compared with the control group. From the qRT-PCR analysis results, immune system-related genes encoding IL-8, CXCL8a, and CXC11 were significantly up-regulated in infected gibel carp, while ZAP70 was significantly down-regulated. Immunohistochemical results also showed the down-regulated ZAP70 in the infected group. Apoptosis-related genes encoding CASP3 and Mcl-1b were up-regulated in response to C. hexasticha infection. These genes indicate the activation of CASP family-related apoptosis and Bim-mediated mitochondrial apoptotic pathways. TUNEL assays also revealed severe apoptosis in the infected group. Based on this study's results, it can be concluded that C. hexasticha infection leads to histopathological changes in the gills of infected fish, and induces both a significant immune response and apoptosis.


Assuntos
Doenças dos Peixes , Carpa Dourada , Animais , Brânquias/metabolismo , Multiômica , Imunidade , Apoptose
9.
Environ Int ; 184: 108477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340406

RESUMO

Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.


Assuntos
Craniossinostoses , Sistema de Sinalização das MAP Quinases , Feminino , Gravidez , Camundongos , Humanos , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Níquel/toxicidade , Osteogênese , Craniossinostoses/genética , Transdução de Sinais , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos
10.
Int J Parasitol Parasites Wildl ; 23: 100894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38187442

RESUMO

This study aimed to examine the prevalence of Ichthyophthirius multifiliis in fish inhabiting natural water bodies in the Lhasa and Nagqu regions of Tibet in September 2020 and August 2021. The results showed that Schizopygopsis selincuoensis had the highest prevalence of I. multifiliis at 33.73% (56/166), followed by Triplophysa tibetana at 30.00% (6/20), Triplophysa brevicauda at 27.91% (12/43) and Schizopygopsis thermalis at 23.66% (31/131). No infection with I. multifiliis was observed in exotic fish species. In addition, the prevalence of I. multifiliis in Boqu Zangbo (river), Selincuo Lake and Cuona Lake in the Nagqu region was found to be significantly higher than that in Lalu Wetland and Chabalang Wetland in the Lhasa region (P < 0.05). The study revealed a significantly lower prevalence in Lhasa River than in Cuona Lake (P < 0.05). Notably, our findings revealed instances of I. multifiliis infections even in saline water bodies, thereby emphasizing the potential threat that this parasite poses to the preservation of indigenous fish resources in Tibet. Consequently, immediate and effective countermeasures are imperative. This study represents the first systematic investigation of I. multifiliis infection in natural water bodies in Tibet.

11.
BMC Med ; 22(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169387

RESUMO

BACKGROUND: Interpregnancy interval (IPI) is associated with a variety of adverse maternal and infant outcomes. However, reports of its associations with early infant neurodevelopment are limited and the mechanisms of this association have not been elucidated. Maternal-fetal glucose metabolism has been shown to be associated with infant neurodevelopmental. The objective of this study was to determine whether this metabolism plays a role in the relationship between IPI and neurodevelopment. METHODS: This prospective birth cohort study included 2599 mother-infant pairs. The IPI was calculated by subtracting the gestational age of the current pregnancy from the interval at the end of the previous pregnancy. Neurodevelopmental outcomes at 12 months in infants were assessed by the Ages and Stages Questionnaire Edition 3 (ASQ-3). Maternal fasting venous blood was collected at 24-28 weeks and cord blood was collected at delivery. The association between IPI and neurodevelopment was determined by logistic regression. Mediation and sensitivity analyses were also conducted. RESULTS: In our cohort, 14.0% had an IPI < 12 months. IPI < 12 months increased the failure of the communication domain, fine motor domain, and personal social domain of the ASQ (relative risks (RRs) with 95% confidence interval (CI): 1.73 [1.11,2.70]; 1.73 [1.10,2.72]; 1.51 [1.00,2.29]). Maternal homeostasis model assessment of insulin resistance (HOMA-IR) and cord blood C-peptide was significantly associated with failure in the communication domain [RRs with 95% CI: 1.15 (1.02, 1.31); 2.15 (1.26, 3.67)]. The proportion of the association between IPI and failure of the communication domain risk mediated by maternal HOMA-IR and cord blood C-peptide was 14.4%. CONCLUSIONS: IPI < 12 months was associated with failing the communication domain in infants. Maternal-fetal glucose metabolism abnormality may partially explain the risk of neurodevelopmental delay caused by short IPI.


Assuntos
Nascimento Prematuro , Gravidez , Lactente , Feminino , Humanos , Estudos de Coortes , Nascimento Prematuro/etiologia , Intervalo entre Nascimentos , Peptídeo C , Estudos Prospectivos , Glucose
12.
BMC Microbiol ; 24(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172646

RESUMO

BACKGROUND: Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS: Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS: We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.


Assuntos
Balantidium , Carpas , Microbioma Gastrointestinal , Animais , Bactérias/genética , Virulência
13.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255762

RESUMO

Far-red light exerts an important regulatory influence on plant growth and development. However, the mechanisms underlying far-red light regulation of morphogenesis and photosynthetic characteristics in blueberry plantlets in vitro have remained elusive. Here, physiological and transcriptomic analyses were conducted on blueberry plantlets in vitro supplemented with far-red light. The results indicated that supplementation with low far-red light, such as 6 µmol m-2 s-1 and 14 µmol m-2 s-1 far-red (6FR and 14FR) light treatments, significantly increased proliferation-related indicators, including shoot length, shoot number, gibberellin A3, and trans-zeatin riboside content. It was found that 6FR and 14 FR significantly reduced chlorophyll content in blueberry plantlets but enhanced electron transport rates. Weighted correlation network analysis (WGCNA) showed the enrichment of iron ion-related genes in modules associated with photosynthesis. Genes such as NAC, ABCG11, GASA1, and Erf74 were significantly enriched within the proliferation-related module. Taken together, we conclude that low far-red light can promote the proliferative capacity of blueberry plantlets in vitro by affecting hormone pathways and the formation of secondary cell walls, concurrently regulating chlorophyll content and iron ion homeostasis to affect photosynthetic capacity.


Assuntos
Mirtilos Azuis (Planta) , 60439 , Fotossíntese , Clorofila , Ferro , Proliferação de Células
14.
Parasit Vectors ; 17(1): 42, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291495

RESUMO

BACKGROUND: Gyrodactylus is a lineage of monogenean flatworm ectoparasites exhibiting many features that make them a suitable model to study the host-parasite coevolutionary dynamics. Previous coevolutionary studies of this lineage mainly relied on low-power datasets (a small number of samples and a single molecular marker) and (now) outdated algorithms. METHODS: To investigate the coevolutionary relationship of gyrodactylids and their fish hosts in high resolution, we used complete mitogenomes (including two newly sequenced Gyrodactylus species), a large number of species in the single-gene dataset, and four different coevolutionary algorithms. RESULTS: The overall coevolutionary fit between the parasites and hosts was consistently significant. Multiple indicators confirmed that gyrodactylids are generally highly host-specific parasites, but several species could parasitize either multiple (more than 5) or phylogenetically distant fish hosts. The molecular dating results indicated that gyrodactylids tend to evolve towards high host specificity. Speciation by host switch was identified as a more important speciation mode than co-speciation. Assuming that the ancestral host belonged to Cypriniformes, we inferred four major host switch events to non-Cypriniformes hosts (mostly Salmoniformes), all of which occurred deep in the evolutionary history. Despite their relative rarity, these events had strong macroevolutionary consequences for gyrodactylid diversity. For example, in our dataset, 57.28% of all studied gyrodactylids parasitized only non-Cypriniformes hosts, which implies that the evolutionary history of more than half of all included lineages could be traced back to these major host switch events. The geographical co-occurrence of fishes and gyrodactylids determined the host use by these gyrodactylids, and geography accounted for most of the phylogenetic signal in host use. CONCLUSIONS: Our findings suggest that the coevolution of Gyrodactylus flatworms and their hosts is largely driven by geography, phylogeny, and host switches.


Assuntos
Platelmintos , Trematódeos , Animais , Filogenia , Trematódeos/genética , Platelmintos/genética , Evolução Biológica , Peixes/parasitologia , Geografia , Interações Hospedeiro-Parasita
15.
Diabetes Res Clin Pract ; 207: 111081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38160736

RESUMO

AIMS: To develop a metric termed the diabetic retinopathy-related homeostatic dysregulation (DRHD) value, and estimate its association with future risk of mortality in individuals with type 2 diabetes. METHODS: With the data of the NHANES, the biomarkers associated with DR were identified from 40 clinical parameters using LASSO regression. Subsequently, the DRHD value was constructed utilizing the Mahalanobis distance approach. In the retrospective cohortof 6420 type 2 diabetes patients, we estimated the associations between DRHD values and mortality related to all-cause, cardiovascular disease (CVD) and diabetes-specific causes using Cox proportional hazards regression models. RESULTS: A set of 14 biomarkers associated with DR was identified for the construction of DRHD value. During an average of 8 years of follow-up, the multivariable-adjusted HRs and corresponding 95 % CIs for the highest quartiles of DRHD values were 2.04 (1.76, 2.37), 2.32 (1.78, 3.01), and 2.29 (1.72, 3.04) for all-cause, CVD and diabetes-specific mortality, respectively. Furthermore, we developed a web-based calculator for the DRHD value to enhance its accessibility and usability (https://dzwxl-drhd.streamlit.app/). CONCLUSIONS: Our study constructed the DRHD value as a measure to assess homeostatic dysregulation among individuals with type 2 diabetes. The DRHD values exhibited potential as a prognostic indicator for retinopathy and for mortality in patients affected by type 2 diabetes.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Humanos , Retinopatia Diabética/complicações , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Estudos Retrospectivos , Inquéritos Nutricionais , Doenças Cardiovasculares/complicações , Biomarcadores , Fatores de Risco
16.
Environ Health ; 22(1): 85, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062446

RESUMO

BACKGROUND: Both genetic factors and air pollution are risk factors for coronary artery disease (CAD), but their combined effects on CAD are uncertain. The study aimed to comprehensively investigate their separate, combined and interaction effects on the onset of CAD. METHODS: We utilized data from the UK Biobank with a recruitment of 487,507 participants who were free of CAD at baseline from 2006 to 2010. We explored the separate, combined effect or interaction association among genetic factors, air pollution and CAD with the polygenic risk score (PRS) and Cox proportional hazard models. RESULTS: The hazard ratios (HRs) [95% confidence interval (CI)] of CAD for 10-µg/m3 increases in PM2.5, NO2 and NOx concentrations were 1.25 (1.09, 1.44), 1.03 (1.01, 1.05) and 1.01 (1.00, 1.02), respectively. Participants with high PRS and air pollution exposure had a higher risk of CAD than those with the low genetic risk and low air pollution exposure, and the HRs (95% CI) of CAD in the PM2.5, PM10, NO2 and NOx high joint exposure groups were 1.56 (1.48, 1.64), 1.55(1.48, 1.63), 1.57 (1.49, 1.65), and 1.57 (1.49, 1.65), respectively. Air pollution and genetic factors exerted significant additive effects on the development of CAD (relative excess risk due to the interaction [RERI]: 0.12 (0.05, 0.19) for PM2.5, 0.17 (0.10, 0.24) for PM10, 0.14 (0.07, 0.21) for NO2, and 0.17 (0.10, 0.24) for NOx; attributable proportion due to the interaction [AP]: 0.09 (0.04, 0.14) for PM2.5, 0.12 (0.07, 0.18) for PM10, 0.11 (0.06, 0.16) for NO2, and 0.13 (0.08, 0.18) for NOx). CONCLUSION: Exposure to air pollution was significantly related to an increased CAD risk, which could be further strengthened by CAD gene susceptibility. Additionally, there were positive additive interactions between genetic factors and air pollution on the onset of CAD. This can provide a more comprehensive, precise and individualized scientific basis for the risk assessment, prevention and control of CAD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Predisposição Genética para Doença
17.
Front Microbiol ; 14: 1295456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075928

RESUMO

Introduction: Parasitic ciliates are protozoans with a global distribution. Along with the gut microbiota, they have formed a micro-ecosystem that affects the host's nutrition, metabolism, and immunity. The interactions and relationships among the three components of this microecosystem (protozoa, gut microbiota, and host) remain only partially understood. Xenocypris fish and the unique ciliate Balantidium polyvacuolum in its hindgut are good materials to study the interplay. Methods: In this study, 16S rRNA gene amplicon sequencing and short-chain fatty acids (SCFAs) identification were used. Network was also constructed to understand their relationships. Results: We found that the gut microbiota of B. polyvacuolum-infected X. davidi and X. argentea had higher diversity, richness, and evenness than uninfected ones. B. polyvacuolum could lead to an increase of Fusobacterium and Chloroflexi in both X. davidi and X. argentea, while significantly increase the abundance of genera Romboutsia and Clostridium in X. argentea. Besides, B. polyvacuolum could significantly increase the content of total SCFAs and acetic acid in X. davidi and increase the concentrations of propionic, isobutyric and butanoic acids in X. argentea. Furthermore, correlation analyses showed that B. polyvacuolum may alter SCFAs by affecting key SCFAs-producing bacteria such as Clostridium and Cetobacterium. Discussion: This study greatly expands our understanding of relationships among B. polyvacuolum, gut microbiota and host Xenocypris fish, which sheds new insights into the mechanism of interaction among protozoa, gut microbiota and host.

18.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858069

RESUMO

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Assuntos
Balantidium , Cipriniformes , Animais , Carboidratos , Metabolismo Energético , Amido
19.
Chemosphere ; 345: 140477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858770

RESUMO

Glyphosate (GLY) is a widely used herbicide with potential adverse effects on public health. However, the current epidemiological evidence is limited. This study aimed to investigate the potential associations between exposure to GLY and multiple health outcomes. The data on urine GLY concentration and nine health outcomes, including type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), obesity, chronic kidney disease (CKD), hepatic steatosis, cancers, chronic obstructive pulmonary disease (COPD), and neurodegenerative diseases (NGDs), were extracted from NHANES (2013-2016). The associations between GLY exposure and each health outcome were estimated using reverse-scale Cox regression and logistic regression. Furthermore, mediation analysis was conducted to identify potential mediators in the significant associations. The dose-response relationships between GLY exposure with health outcomes and potential mediators were analyzed using restricted cubic spline (RCS) regression. The findings of the study revealed that individuals with higher urinary concentrations of GLY had a higher likelihood of having T2DM, hypertension, CVD and obesity (p < 0.001, p = 0.005, p < 0.001 and p = 0.005, respectively). In the reverse-scale Cox regression, a notable association was solely discerned between exposure to GLY and the risk of T2DM (adjusted HR = 1.22, 95% CI: 1.10, 1.36). Consistent outcomes were also obtained via logistic regression analysis, wherein the adjusted OR and 95% CI for T2DM were determined to be 1.30 (1.12, 1.52). Moreover, the present investigation identified serum high-density lipoprotein cholesterol (HDL) as a mediator in this association, with a mediating effect of 7.14% (p = 0.040). This mediating effect was further substantiated by RCS regression, wherein significant dose-response associations were observed between GLY exposure and an increased risk of T2DM (p = 0.002) and reduced levels of HDL (p = 0.001). Collectively, these findings imply an association between GLY exposure and an increased risk of T2DM in the general adult population.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensão , Adulto , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Inquéritos Nutricionais , Obesidade , Hipertensão/induzido quimicamente , Hipertensão/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia
20.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685862

RESUMO

Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.


Assuntos
Cilióforos , Parasitos , Animais , Transcriptoma , Aclimatação , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...